3.2.61 \(\int \frac {\csc ^2(e+f x)}{(a+b \sin ^2(e+f x))^{3/2}} \, dx\) [161]

3.2.61.1 Optimal result
3.2.61.2 Mathematica [A] (verified)
3.2.61.3 Rubi [A] (verified)
3.2.61.4 Maple [A] (verified)
3.2.61.5 Fricas [C] (verification not implemented)
3.2.61.6 Sympy [F]
3.2.61.7 Maxima [F]
3.2.61.8 Giac [F]
3.2.61.9 Mupad [F(-1)]

3.2.61.1 Optimal result

Integrand size = 25, antiderivative size = 235 \[ \int \frac {\csc ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\frac {b \cot (e+f x)}{a (a+b) f \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a+2 b) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a^2 (a+b) f}-\frac {(a+2 b) \sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a^2 (a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{a f \sqrt {a+b \sin ^2(e+f x)}} \]

output
b*cot(f*x+e)/a/(a+b)/f/(a+b*sin(f*x+e)^2)^(1/2)-(a+2*b)*cot(f*x+e)*(a+b*si 
n(f*x+e)^2)^(1/2)/a^2/(a+b)/f-(a+2*b)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*s 
ec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(a+b*sin(f*x+e)^2)^(1/2)/a^2/(a+b)/f/(1+b*s 
in(f*x+e)^2/a)^(1/2)+EllipticF(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f* 
x+e)^2)^(1/2)*(1+b*sin(f*x+e)^2/a)^(1/2)/a/f/(a+b*sin(f*x+e)^2)^(1/2)
 
3.2.61.2 Mathematica [A] (verified)

Time = 1.03 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.72 \[ \int \frac {\csc ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\frac {\left (-2 a^2-3 a b-2 b^2+b (a+2 b) \cos (2 (e+f x))\right ) \cot (e+f x)-\sqrt {2} a (a+2 b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )+\sqrt {2} a (a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )}{\sqrt {2} a^2 (a+b) f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

input
Integrate[Csc[e + f*x]^2/(a + b*Sin[e + f*x]^2)^(3/2),x]
 
output
((-2*a^2 - 3*a*b - 2*b^2 + b*(a + 2*b)*Cos[2*(e + f*x)])*Cot[e + f*x] - Sq 
rt[2]*a*(a + 2*b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x 
, -(b/a)] + Sqrt[2]*a*(a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*Ellip 
ticF[e + f*x, -(b/a)])/(Sqrt[2]*a^2*(a + b)*f*Sqrt[2*a + b - b*Cos[2*(e + 
f*x)]])
 
3.2.61.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 252, normalized size of antiderivative = 1.07, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3042, 3667, 374, 25, 445, 27, 399, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (e+f x)^2 \left (a+b \sin (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 3667

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \int \frac {\csc ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \left (b \sin ^2(e+f x)+a\right )^{3/2}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 374

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {b \sqrt {1-\sin ^2(e+f x)} \csc (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}-\frac {\int -\frac {\csc ^2(e+f x) \left (-b \sin ^2(e+f x)+a+2 b\right )}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a (a+b)}\right )}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\int \frac {\csc ^2(e+f x) \left (-b \sin ^2(e+f x)+a+2 b\right )}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a (a+b)}+\frac {b \sqrt {1-\sin ^2(e+f x)} \csc (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {-\frac {\int \frac {b \left ((a+2 b) \sin ^2(e+f x)+a\right )}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a}-\frac {(a+2 b) \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}}{a (a+b)}+\frac {b \sqrt {1-\sin ^2(e+f x)} \csc (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {-\frac {b \int \frac {(a+2 b) \sin ^2(e+f x)+a}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a}-\frac {(a+2 b) \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}}{a (a+b)}+\frac {b \sqrt {1-\sin ^2(e+f x)} \csc (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {-\frac {b \left (\frac {(a+2 b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}-\frac {a (a+b) \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{b}\right )}{a}-\frac {(a+2 b) \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}}{a (a+b)}+\frac {b \sqrt {1-\sin ^2(e+f x)} \csc (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {-\frac {b \left (\frac {(a+2 b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}-\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}d\sin (e+f x)}{b \sqrt {a+b \sin ^2(e+f x)}}\right )}{a}-\frac {(a+2 b) \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}}{a (a+b)}+\frac {b \sqrt {1-\sin ^2(e+f x)} \csc (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {-\frac {b \left (\frac {(a+2 b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}-\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}\right )}{a}-\frac {(a+2 b) \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}}{a (a+b)}+\frac {b \sqrt {1-\sin ^2(e+f x)} \csc (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {-\frac {b \left (\frac {(a+2 b) \sqrt {a+b \sin ^2(e+f x)} \int \frac {\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}\right )}{a}-\frac {(a+2 b) \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}}{a (a+b)}+\frac {b \sqrt {1-\sin ^2(e+f x)} \csc (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {-\frac {b \left (\frac {(a+2 b) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}\right )}{a}-\frac {(a+2 b) \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}}{a (a+b)}+\frac {b \sqrt {1-\sin ^2(e+f x)} \csc (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

input
Int[Csc[e + f*x]^2/(a + b*Sin[e + f*x]^2)^(3/2),x]
 
output
(Sqrt[Cos[e + f*x]^2]*Sec[e + f*x]*((b*Csc[e + f*x]*Sqrt[1 - Sin[e + f*x]^ 
2])/(a*(a + b)*Sqrt[a + b*Sin[e + f*x]^2]) + (-(((a + 2*b)*Csc[e + f*x]*Sq 
rt[1 - Sin[e + f*x]^2]*Sqrt[a + b*Sin[e + f*x]^2])/a) - (b*(((a + 2*b)*Ell 
ipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[a + b*Sin[e + f*x]^2])/(b*Sqrt[1 
 + (b*Sin[e + f*x]^2)/a]) - (a*(a + b)*EllipticF[ArcSin[Sin[e + f*x]], -(b 
/a)]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(b*Sqrt[a + b*Sin[e + f*x]^2])))/a)/( 
a*(a + b))))/f
 

3.2.61.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 374
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-b)*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q 
 + 1)/(a*e*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(e*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[b*c*(m + 1) + 2*(b*c - 
a*d)*(p + 1) + d*b*(m + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, 
c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IntBinomialQ[a, b, 
 c, d, e, m, 2, p, q, x]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3667
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^( 
p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff^(m + 1 
)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x]))   Subst[Int[x^m*((a + b*ff^2*x^2) 
^p/Sqrt[1 - ff^2*x^2]), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, 
p}, x] && IntegerQ[m/2] &&  !IntegerQ[p]
 
3.2.61.4 Maple [A] (verified)

Time = 2.28 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.85

method result size
default \(\frac {\left (a b +2 b^{2}\right ) \left (\cos ^{4}\left (f x +e \right )\right )+\left (-a^{2}-2 a b -2 b^{2}\right ) \left (\cos ^{2}\left (f x +e \right )\right )+\sin \left (f x +e \right ) \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, a \left (F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a +F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b -E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a -2 E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b \right )}{a^{2} \sin \left (f x +e \right ) \left (a +b \right ) \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(199\)

input
int(csc(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
((a*b+2*b^2)*cos(f*x+e)^4+(-a^2-2*a*b-2*b^2)*cos(f*x+e)^2+sin(f*x+e)*(-b/a 
*cos(f*x+e)^2+(a+b)/a)^(1/2)*(cos(f*x+e)^2)^(1/2)*a*(EllipticF(sin(f*x+e), 
(-1/a*b)^(1/2))*a+EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b-EllipticE(sin(f*x 
+e),(-1/a*b)^(1/2))*a-2*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*b))/a^2/sin(f 
*x+e)/(a+b)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f
 
3.2.61.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.17 (sec) , antiderivative size = 1075, normalized size of antiderivative = 4.57 \[ \int \frac {\csc ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(csc(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
1/2*((2*(I*a^2*b + 3*I*a*b^2 + 2*I*b^3 + (-I*a*b^2 - 2*I*b^3)*cos(f*x + e) 
^2)*sqrt(-b)*sqrt((a^2 + a*b)/b^2)*sin(f*x + e) - (-2*I*a^3 - 7*I*a^2*b - 
7*I*a*b^2 - 2*I*b^3 + (2*I*a^2*b + 5*I*a*b^2 + 2*I*b^3)*cos(f*x + e)^2)*sq 
rt(-b)*sin(f*x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*ellipti 
c_e(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) + I 
*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b 
^2))/b^2) + (2*(-I*a^2*b - 3*I*a*b^2 - 2*I*b^3 + (I*a*b^2 + 2*I*b^3)*cos(f 
*x + e)^2)*sqrt(-b)*sqrt((a^2 + a*b)/b^2)*sin(f*x + e) - (2*I*a^3 + 7*I*a^ 
2*b + 7*I*a*b^2 + 2*I*b^3 + (-2*I*a^2*b - 5*I*a*b^2 - 2*I*b^3)*cos(f*x + e 
)^2)*sqrt(-b)*sin(f*x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)* 
elliptic_e(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + 
 e) - I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + 
 a*b)/b^2))/b^2) - 2*(4*(I*a^2*b + 2*I*a*b^2 + I*b^3 + (-I*a*b^2 - I*b^3)* 
cos(f*x + e)^2)*sqrt(-b)*sqrt((a^2 + a*b)/b^2)*sin(f*x + e) + (-2*I*a^3 - 
3*I*a^2*b - I*a*b^2 + (2*I*a^2*b + I*a*b^2)*cos(f*x + e)^2)*sqrt(-b)*sin(f 
*x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_f(arcsin(s 
qrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e 
))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2) - 
2*(4*(-I*a^2*b - 2*I*a*b^2 - I*b^3 + (I*a*b^2 + I*b^3)*cos(f*x + e)^2)*sqr 
t(-b)*sqrt((a^2 + a*b)/b^2)*sin(f*x + e) + (2*I*a^3 + 3*I*a^2*b + I*a*b...
 
3.2.61.6 Sympy [F]

\[ \int \frac {\csc ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\csc ^{2}{\left (e + f x \right )}}{\left (a + b \sin ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(csc(f*x+e)**2/(a+b*sin(f*x+e)**2)**(3/2),x)
 
output
Integral(csc(e + f*x)**2/(a + b*sin(e + f*x)**2)**(3/2), x)
 
3.2.61.7 Maxima [F]

\[ \int \frac {\csc ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\csc \left (f x + e\right )^{2}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(csc(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate(csc(f*x + e)^2/(b*sin(f*x + e)^2 + a)^(3/2), x)
 
3.2.61.8 Giac [F]

\[ \int \frac {\csc ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\csc \left (f x + e\right )^{2}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(csc(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
sage0*x
 
3.2.61.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\csc ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {1}{{\sin \left (e+f\,x\right )}^2\,{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \]

input
int(1/(sin(e + f*x)^2*(a + b*sin(e + f*x)^2)^(3/2)),x)
 
output
int(1/(sin(e + f*x)^2*(a + b*sin(e + f*x)^2)^(3/2)), x)